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Abstract 

This paper presents an innovative, extremely resource-friendly component technology for 
embedded software. This software component technology maximizes the possibilities to re-
use software and minimizes the costs leading to a reduced development time and develop-
ment costs and better software quality. It allows the reuse even of small software parts (so 
called micro components) without consuming additional memory or run time. It provides ge-
neric mechanisms for software component configuration (no more unreadable nested #if / 
#ifdef’s) in order to fit a reusable software component to the needs of a certain application 
without resorting to error-prone manual source code modifications (no more copy & paste). It 
allows static or dynamic interconnections of components and interfaces either during build-
time or during run-time with the ability to insert arbitrary glue code. It supports distributed 
systems through generic marshalling mechanisms. It is realized by a tool working as a pre-
compiler for a C dialect, basically minimally extended by adding the two component-oriented 
keywords component and interface. This tool produces ANSI-C code that can be com-
piled for any platform for which a conforming C compiler is available – no operating system 
or framework libraries are required. Due to a transparent naming convention, the C code 
generated by the tool can be mixed with any hand-coded or otherwise auto-generated C 
code. The tool also provides generic support for generating software component documenta-
tion and for automating software component tests. The approach solves typical problems 
encountered when trying to develop reusable software in C and is easy to understand for 
skilled C/C++ - programmers. 
 

1. Introduction 

Component oriented software develop-
ment is one of the most promising ap-
proaches to control the always-increasing 
complexity of computer programs. The use 
of reusable, tested and therefore mature 
software components can significantly 
accelerate the development of a complex 
computer program and at the same time, 
the quality of the final product normally 
increases considerably because of the 
assured quality of the individual compo-
nents. 

The use of existing component techniques 
out of the PC or server software area, like 
COM or Corba, is prohibited for embedded 
computer systems with very limited re-

sources based on e.g. 8- or 16-bit micro-
controllers due to the amount of additional 
computer resources like memory and run 
time these techniques require. Additionally 
required resources consequently require a 
more powerful microcontroller, which will 
be more expensive and whose price then 
increases the costs for each end device or 
decreases the earnings per end device 
respectively. Since these microcontrollers 
are often applied in large volume products 
where the cost pressure from the custom-
ers and competitors is very high, this nor-
mally isn’t acceptable. 

In addition, a reusable software compo-
nent must cover the largest possible func-
tionality for all imaginable applications in 



order to be flexibly useable without 
changes. In case such software compo-
nents are used with existing component 
techniques for a specific application, a 
major part of the functionality isn’t used in 
this particular case, but then unnecessarily 
wastes resources like memory and run 
time, which is unacceptable on computer 
systems with limited resources because of 
the reasons mentioned before.  

To be able to remove such unnecessary 
functionality out of a component after-
wards, unlike in the PC or server software 
area the software components shouldn’t 
be defined on a binary code level but on a 
source code level, since all optimisation 
possibilities are still available here. Soft-
ware components on a binary code level 
would also limit the reusability a lot any-
way because of the large amount of binary 
incompatible microcontroller platforms. 

2. Problem definition 

If one tries to develop a reusable C-
module or a C++-class for an embedded 
software application, one often faces a 
conflict of interest between a possibly 
widespread and flexible and a resource 
optimised implementation during the de-
sign phase – in this case one has to de-
cide between one of the solutions that 
normally limits the reusability again. The 
following problem classes can be distin-
guished: 

1. Multiple use of a code module 

2. Constant or variable parameters 

3. Flexible linking of modules 

Below, these problem classes are clarified 
using the example of the design of a soft-
ware driver module for a serial port: 

Depending on the amount of connection 
pins, individual members inside a micro-
controller family are often configured with 
a different amount of peripheral devices. 
For instance a microcontroller of a specific 
family only has one serial port while an-
other member is equipped with three, 
where these are typically identically ac-
cessed and only the registers and the in-
terrupt vectors of the peripheral devices 
are located at different addresses respec-
tively.  

If a software driver module for the serial 
ports of this microcontroller family should 

be developed in a not specifically compo-
nent oriented programming language like 
C or C++ now, the question arises if the 
driver functions should be provided with an 
index for the desired serial port or not. For 
microcontrollers with only one serial port, 
passing an index would be a waste of re-
sources since no different ports can be 
accessed. Even for microcontrollers with 
more then one port, it should be consid-
ered if passing an index is useful or if it 
would be better if a copy of the driver 
module would be available for each serial 
port instead. The last option definitely 
makes sense when a program optimised 
for run time is required, sufficient memory 
is available and the meaning of the ports is 
fixed during build time and doesn’t change 
during run time. Since the same program 
code is used more than once passing an 
additional index does save memory but 
will cost run time since on every access of 
the driver functions to the serial port regis-
ters, the corresponding indexing has to be 
resolved. Such different requirements can 
currently be met only by error-prone man-
ual copying of source code (aka Copy & 
Paste) or by the help of rather intranspar-
ent and hardly maintainable C-pre-
processor constructs using multiply in-
cluded header files with renaming macros, 
which are also error-prone. 

Other problems in a not particularly com-
ponent oriented programming language 
like C or C++ may arise in the initialisation 
of the software driver for a serial port when 
transfer parameters like baud rate, number 
of data bits, number of stop bits, parity 
und/or the like are considered. In a lot of 
applications these parameters are defined 
during the build time, since the respective 
systems have fixed connections to other 
systems with fixed transfer parameters. 
Only on few systems, these parameters 
can change during run time. The transfer 
parameters can therefore be either vari-
able parameters of the initialisation func-
tion of the driver module or can be con-
stant parameters of the driver module de-
fined by macros. For applications where 
the transfer parameters are fixed at build 
time, variable parameters would be a true 
waste of memory and run time, since the 
required calculations can already be car-
ried out during compilation. Nevertheless, 
committing to fixed parameters considera-
bly limits the flexibility and reusability of 



the driver module. Until now, such different 
requirements could only be realised by an 
error-prone manual modification of source 
code or by means of an also, because of 
its poor maintainability, error-prone condi-
tional compilation using the C-pre-
processor constructs #if and #ifdef. 

Further problems in a not specifically 
component oriented programming lan-
guage like C or C++ arise when linking 
such a software driver module for serial 
ports for instance with an overlying soft-
ware module for the implementation of a 
communication protocol through given 
ports. 

FrameProtocol

SCIDriver

 

 

A software driver module for a serial port 
typically has, when realised via interrupts, 
exported functions that can be used by 
other modules and that can be called for 
actions like starting the transmission a 
character via the port and imported func-
tions that are used by the software driver 
interface itself and that are called for 
events like indication the receipt of a char-
acter via the port. After an according link-
ing, the communication protocol module, 
logically having a higher level then the 
software driver module, now calls the func-
tions that are imported by this protocol and 
exported by the port driver and the port 
driver on its side would call the functions 
imported by this module, which are ex-
ported by the protocol module.  

In case one wants to develop reusable 
software modules, the source code of 
these modules may not have direct refer-
ences to functions from another module 
since in another application for instance a 
completly different communication protocol 
could be on top of the software driver or 
the communication protocol could use a 
completely different interface. Such a 
transparent component linking is very hard 
to achieve in C, especially in case of recip-
rocal references, since problems with cir-

cular included header files arise very 
quickly. 
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Although these problems can basically be 
solved by an extensive use of the C-pre-
processor, one will end up with a hardly 
maintainable collection of deep nested 
code fragments that are conditionally 
compiled using the pre-processor con-
structs #if and #ifdef, which are further-
more littered with deep nested macro defi-
nitions using the pre-processor construct 
#define.  

Since such a code becomes unmaintain-
able very quickly, one limits itself during 
the real design of C-modules or C++-
classes to those special cases that appear 
to be important at that particular moment. 
As a consequence, this of course limits the 
possibility of reuse a lot (for an adequate 
example see [1]). 

3. Solution proposal 

We at SoftComponents have developed a 
solution for these problems based on our 
own, unsatisfying efforts spent in the past 
few years in using the standard C pre-
processor in a clever way to program 
component oriented but nevertheless 
maintainable. 

It consists of a dialect of the standard pro-
gramming language C, which has been 
cautiously extended by a few component 
elements that are mapped to ANSI-C by a 
dedicated pre-compiler and which we call 
Component C therefore. Basically, the two 
keywords component and interface 
have been added and the syntax was ex-
tended in analogy to the other C language 
syntax elements. Since there are alterna-
tive language elements available now, an 
obligatory integration of the C-pre-
processor can be abandoned and a clear 
language definition can be achieved. 

An outstanding achievement of this solu-
tion is the generic configurability of 
every software component created with it 
without the need for the component devel-
oper to write any configuration dependend 



code. Because of this, every component 
can be adapted to the respective applica-
tion without additional efforts and the use 
of resources is minimised. Therefore, also 
the smallest software elements can be 
reused as so-called MicroComponents 
without any overhead. 

From a syntactic point of view, a compo-
nent definition in Component C equates a 
type declaration, from a semantic point of 
view it is more equivalent to a template in 
C++ (but significantly differs), since no 
binary code is created at this stage. How-
ever, a component configuration equates 
an initialised variable definition in C from a 
syntactic point of view, but from a seman-
tic point of view it rather equals the use of 
a template in C++; since at this stage bi-
nary code will be generated. 

Component definition 

Components may contain types, con-
stants, variables, functions, interfaces or 
subcomponents as exported or imported 
elements. Types, constants, variables and 
functions are defined as in C, optional at-
tributes as similar to MIDL. Interfaces are 
logical groups of elements and can contain 
types, constants, variables, functions or 
sub-interfaces. Global variables and func-
tions outside a component are, as in C, 
allowed. 

All elements required by a component and 
provided by another component, i.e. which 
are imported, are labelled with the key-
word extern. All elements that are only 

used inside the component and should not 
be imported or exported are labelled with 
the keyword static. All elements without 
such a label are exported. These defini-
tions are equivalent to the usage of the 
keywords on module level in C. For a 
clean distinction of components, imported 
variables can only be written when they 
are additionally labelled with the keyword 
volatile - otherwise they will be read-
only. 

Below an example of a definition of two 
software components in Component C is 
shown: 

// Defines Interface ia 

interface ia  

{  

  int fa (int x);  

  int fb (int z); 

}; 

 

// Defines Component a 

component a    

{ 

  char v = 1;    

  static int sv = 2;  

  volatile float vv = 3;  

   

  const long c = 42;    

  static const short sc = 43;    

  volatile const double vc = 44;    

 

  int f (int x, int y) 

  { 

    return (x*y); 

  } 

 

  int fa (int x) 

  { 

    return (x*v/c);  

  }; 

  int fb (int z) 

  { 

    return (z*c);  

  } 

 

  interface ia ia1; 

}; 

 

// Defines Component b 

component b    

{ 

  extern int ev; 

  extern const long ec; 

 

  extern int ef (int x, int y); 

 

  extern interface ia eia1;  

 

  interface ib  

  {   

    int fc (int y); 

  }  

  ib1 = 

  { 

    .fc = {  

      return (eia1.fa (y)+ev); } 

  }; 

}; 

Component usage 

An implemented component can be used 
once or multiple times in an application in 
the same, but also in a different configura-
tion. If the component a defined above 
should be used once, this is possible in 
the following way: 

// One component instance; 

// Component functions do not  

// contain a reference. A single 

// variable with the name a_vk1 

// is defined. 



 

component a a_vk1;  

 

void main (void) 

{ 

 printf („%d“,a_vk1.ia1. 

fa (42)); 

} 

If the above-mentioned component a 
should be used twice with an identical de-
fault configuration but, for instance, with 
different names, this is possible in the fol-
lowing way: 

component a a_vk1, a_vk2; 

or  

component a a_vk1; 

component a a_vk2; 

This usage actually creates two copies of 
the source code and can be applied in the 
case that a component is used in different 
configurations or when sufficient memory 
is available and the access time has to be 
minimised by constant addresses.  

If a component should be used N times 
with an identical default configuration, this 
is possible in the following way: 

// Three component instances; 

// Component functions contain 

// an impicit index as a  

// reference, a variable array 

// with the name a a_vk3  

// with three elements is  

// defined. 

 

component a a_vk3[3];   

 

void main (void) 

{ 

 printf („%d“,a_vk3[2].ia1. 

fa (42)); 

} 

If a component should be used an arbi-
trary number of times possibly changing 
during runtime, this is possible in the fol-
lowing way. 

// Arbitrary number of  

// component instances;  

// Component functions contain 

// an explicit pointer as a  

// reference, a type with  

// the name a_vk4 is defined.  

 

component a *a_vk4;  

  

void main (void) 

{ 

 a_vk4 a1; 

 a_vk4 *pa2; 

 

pa2 = new a_vk4; 

 

 printf („%d,%d“, a1.ia1. 

fa (42),pa2->ia1. 

fa (43)); 

} 

We call a usage of a defined component in 
one of these ways a configuration of the 
component. The last two configurations 
create only one copy of the source code 
each, where in the first case a component 
index and in the second case a compo-
nent pointer is passed implicitly to the 
component function. In the latter case, a 
component definition and configuration 
basically turns into a class definition from 
an object oriented programming point of 
view. 

Configurating exported elements 
In case the variable isn’t required for the 
specific application, a variable exported by 
a component can be labelled unused by 
setting the respective variable to zero.  

component a a_ev1 = 

{ 

  .v = 0 // Exported  

// variable v unused 

}; 

Because of this, the created source code 
can be optimised, especially when a vari-
able in a component is only written, not 
read. 

When an application always uses the 
same value for a function parameter, a 
function exported by a component can be 
configured by specifying a constant pa-
rameter instead of a variable one.  

component a a_kf1 = 

{ 

  .f = { .x = 42 } // Parameter 

// x of the function f fixed 

}; 

By doing so, the created source code can 
be optimised by immediately using a con-
stant instead of a variable when the func-
tion isn’t called with other values inside the 
component definition itself. 

Also, a function can be labelled unused by 
assigning a zero. 

component a a_kf2 = 

{ 

  .f = 0   // Function f 

// unused 



}; 

By doing so, the source code can be 
dropped when the function isn’t called in-
side the component definition itself. 

An interface exported by a component can 
be configured appropriately for an applica-
tion by labelling non-used functions and 
variables as well as constant function pa-
rameters. 

component a a_ks1 = 

{ 

  .ia = {  

     .fa = { .x = 42 },  

     .fb = 0 }  

}; 

By doing so, the source code can be opti-
mised. 

Also, an interface can be labelled unused 
by assigning a zero. 

component a a_ks2 = 

{ 

  .ia = 0       // Interface  

// ia unused 

}; 

By doing so, the source code and memory 
allocation can be omitted when the func-
tions or variables respectively, aren’t used 
in the component definition itself. 

Linking imported elements 

Imported elements can generally either be 
linked statically during build time, in order 
to minimise the resource footprint but can 
also be linked dynamically during runtime 
in order to maximise the flexibility. 

In a component configuration, a constant 
imported by a component can be statically 
linked to a type compatible constant ex-
pression. 

component b b_vk1 =  

{ 

  .ec = 42  

}; 

For a component used N times, two cases 
can be distinguished. In the first case a 
constant has the same value for all in-
stances 

component b b_vk2[3] =  

{ 

  .ec = 42  // Same value for 

   // all instances 

};                    

In the second case it has different values 
for the different instances 

const long c_vk[3] =  

 { 1, 2, 3 }; 

 

component b b_vk3[3] =  

{ 

  .ec = c_vk  // Different  

  // values for different 

  // instances 

};                     

 

component b b_vk4[3] =  

{ 

 .ec = {42, 43, 44} // Different 

  // values for different 

// instances 

};                    

Both an explicit as well as an implicit as-
signment of an array is possible here. In 
this way, components used N times can 
be parameterised equally but also un-
equally. 

In a component configuration, a variable 
imported by a component can be statically 
linked to a type compatible variable or 
constant expression. 

component b b_vv1 = 

{ 

  .ev = 5 

}; 

 

int v_vv1; 

 

component b b_vv2 = 

{ 

  .ev = v_vv1+3; 

}; 

 

component a a_vv1; 

 

component b b_vv3 = 

{ 

  .ev = a_vv1.v; 

}; 

For the first case attention has to be paid 
to the fact that the expression doesn’t con-
tain any unwanted side-effects since the 
time point on which the evaluation takes 
place depends on the component imple-
mentation and because of this, can’t be 
predicted when required. In the second 
case, using a constant instead of a vari-
able can optimise the created source 
code. 

As for constants, for a component configu-
ration used N times, two cases can be 
distinguished. In the first case, all in-



stances use the same expression where in 
the second case different expressions are 
used. By this, the pre-compiler tries to op-
timise the evaluation and, when possible, 
uses fields of values or pointers when only 
constant expressions or pointer expres-
sions are used respectively. 

If no static linking occurs in the component 
configuration, a function pointer instead of 
a variable is created, which has to be dy-
namically initialised by the application 
when the component is used. 

int v_vv4 (void) 

{ 

  return 42; 

} 

 

component b b_vv4; 

 

void main (void) 

{  

  b_vv4.ev = v_vv4; 

} 

In this case, the variable type of the con-
figured component becomes a pointer to a 
function that returns a value of the original 
type and in the implementation of the 
component a function call is implicitly in-
serted when the variables are referenced. 

In a component configuration, a function 
imported by a component can be statically 
linked with a code block or with a type 
compatible function pointer expression. 

component b b_vf1 = 

{ 

  .ef = { return (x/2); } 

}; 

 

int f_vf1 (int x, int y) 

{ 

  return (x*y); 

} 

 

component b b_vf2 = 

{ 

  .ef = f_vf1 

}; 

 

component a a_vf1; 

 

component b b_vf3 = 

{ 

  .ef = a_vf1.f 

}; 

When linking to a code block, the pre-
compiler will always realise it as an inline 
function. It is always recommended to use 
an intermediary code block when individ-

ual arguments of a function are not evalu-
ated, since the source code can then be 
optimised in such a way that only the re-
quired arguments have to be calculated. 

For a component configuration used N 
times, two cases can be distinguished 
again. In the first case all instances call 
the same function, in the second case dif-
ferent functions are called. 

In a component configuration, an interface 
imported by a component can be statically 
linked with a type compatible listing of in-
dividual elements or with a type compati-
ble interface. 

component b b_vs1 =  

{ 

  .eia = { .fa={return (x/2);},     

 .fb={return (0);} };  

// Interface connected 

// to Glue Logic 

}; 

 

component a a_vs1; 

 

component b b_vs2 =  

{ 

  .eia = a_vs1.ia1;  

// Interfaces connected 1:1  

}; 

For a component configuration used N 
times, two cases can be distinguished 
again. In the first case all instances use 
the same interface and a component index 
is passed through. 

component a a_vs2[3]; 

 

component b b_vs3[3] =  

{ 

  .eia = a_vs2.ia;       

// Index passes through 1:1 

}; 

And in the second case different interfaces 
are used and no component index is 
passed through anymore. 

component a a_vs3[3]; 

 

component b b_vs4[3] =  

{ 

  .eia = { a_vs3[2].ia,  

     a_vs3[1].ia, a_vs3[0].ia };   

 // Explicit Index mapping 

}; 

For a component used an arbitrary num-
ber of times, in the static component con-
figuration only the first case can be used, 
which then looks as follows. 



interface ia *ia_vs = 

{ 

     .fa = { return (x+2); }, 

     .fb = { return (42); } 

} 

 

component b *b_vs5 = 

{ 

  .eia = ia_vs 

}; 

 

Interface inheritance 

Component C supports both simple inheri-
tance of interfaces, like in COM, as well as 
multiple inheritance, but not the inheri-
tance of function code like in C++, since 
this disagrees with the basic thoughts be-
hind components, which include a much 
stricter focus on the encapsulation of in-
formation. 

To avoid the well known Fragile Base 
Class Problem, also in so-called object 
oriented programming one works more 
and more with abstract base classes – but 
abstract base classes are nothing different 
from interfaces!  

External references 

Like in Java, qualified names are used to 
refer to components and interfaces de-
fined in separate files. 

component driver.bus.can.toucan mycan; 

// -> 

$(COMPROOT)\driver\bus\toucan.ccHere 
integral parts of names are mapped on a 
directory structure until the name decom-
position has reached file level. In the case 
that further integral name parts are avail-
able, it is then referred to an element in-
side the file. If the name refers to a com-
plete file, the complete contents of the file 
will then be interpreted as a component or 
an interface respectively, without having 
the entire contents of the file to be paren-
thesed with the according keywords. 

This concept leads to a very advanta-
geous recursive structure; every summa-
rised sentence of configured and linked 
components in the file can on his part be 
interpreted as a component again.  

Because of this, a conventional C-module, 
in which no pre-processor statements like 
#include are present, can directly be inter-
preted and used as a component without 
any change. 

 

 

Attribute and Marshalling 

In the description of interface elements, 
additional attributes like in MIDL can be 
declared. Because of this, it becomes 
possible to realize a generic marshalling of 
function calls and by doing so, systems 
with different priority levels or distributed 
systems can be especially supported. 

Further Features 

The availability of a pre-compiler allows 
the implementation of some additional 
features that are very useful for the crea-
tion of Embedded Software components. 
For example arbitrary scaled fixed-point 
types are supported in the following ad-
vantageous form: 

uint16 Vspd/10; //Vehicle speed 

                //[3.1 km/h] 

typedef sint16 TORQUE*0.05; 

                 //[3.2 Nm] 

TORQUE T_trg; // Target torque 

TORQUE T_act; // Actual torque 

On top of this, the definition of individual 
bits, supported by some microcontrollers 
via bit addressed memory, is also allowed 
outside structures.  

int B_ll : 1;    // idling 

Finally, type templates can also be used 
inside the component definition, which 
then first have to be defined by a compo-
nent configuration.  

any a;        // Arbitrary type 

any int i;    // An integer type 

 



4. Pre-compiler operation method  

The pre-compiler named Composer gen-
erates C code and header files from appli-
cation-independent component definitions 
directed by application-dependent compo-
nent configurations as shown below.  

Component
Repository

Pre-Compiler
for component

configuration and
linking (Composer)

User
Work Areaapplication-specific

component configurations

application-specific
generated C-/H-files

application-independent

component definitions

 

Here the configured number of instances, 
the component multiplicity, is mapped in 
such a way that a structure containing the 
variables of the component is defined and 
for components containing only one in-
stance, a corresponding variable of this 
type is defined, to whose elements the 
functions of the component have direct 
access to. However, for components with 
a fixed number of N instances, a variable 
array of N structures is built and an addi-
tional first parameter of integer type is 
added to the component functions, 
through which an index between 0 and N-
1 has to be passed for the respective 
component instance. For components with 
an arbitrary number of instances, a type 
instead of a variable is defined and the 
component functions are amended by an 
additional first parameter of pointer type, 
through which a pointer to a data structure 
of the defined type has to be passed, for 
which the application has to allocate 
memory either statically or dynamically. 

When not used in the component itself, the 
pre-compiler removes exported elements 
of a component marked unused in the 
component configuration like variables, 
functions and interfaces when they aren’t 
used inside the component itself. Directed 
by a command line switch the pre-compiler 
is also able to detect unused exported 
elements by itself, if the given component 
configuration is concluded in itself and no 
exported elements are used in another 
hand-coded or auto-generated C module. 

For exported functions, having individual 
or all parameters replaced by constant 

values in the component configuration, the 
corresponding parameters are moved from 
the function header to the beginning of the 
function body before the function code and 
are initialised with the value defined in the 
component configuration. 

The pre-compiler uses the value of im-
ported constants for the optimisation of the 
source code when they are not marked 
with the keyword volatile as being adjust-
able during the runtime of the program by 
means of e.g. a configuration program.  

When a Glue-logic expression is used in 
the source code, the pre-compiler will re-
place the access to imported variables by 
this expression, when a static link to an-
other variable is used it is replaced by an 
access to this link and when a dynamic 
link is used, it is replaced by function 
linked by a pointer. If a Glue-Logic-
expression has been specified, it will be 
used for the optimisation of the source 
code. 

Basically, all expressions that are constant 
during build time are evaluated by the pre-
compiler and are optimised accordingly by 
e.g. removing dead code that is not exe-
cuted anymore due to for instance a spe-
cific constant configuration selection, so 
no warning messages will arise from the C 
compiler later on. The resulting C-source 
code is then optimised for both the mem-
ory allocation as well as the run time, so a 
completely manually carried out program-
ming will not require remarkably less re-
sources. 

Similar to JavaDoc or DoxyGen, the pre-
compiler provides support on the docu-
mentation of components on top of that. It 
is also capable of creating XML-
descriptions of created software compo-
nents. Furthermore, generic support for 
automatable component tests as well as 
debugging and profiling is available. 

Via simple naming conventions, the com-
ponent elements can also be accessed 
from standard C-code, so a combination 
with common development methods is 
possible without any problems. 

5. Discussion 

When compared to other methods, the 
approach introduced here shows some 
advantages for component oriented pro-
gramming for embedded systems, but be-



cause it is a novelty, it can’t be seen as a 
standard yet.  

Our aim was to define a minimal exten-
sion of the standard C language in order 
to be able to support component oriented 
programming of embedded software at 
system level and therefore allow better 
reuse of embedded system software. The 
main unique advantage of our approach is 
the generic configurability of all software 
components defined with it and therefore 
the possibility to adjust every software 
component to the need of an application in 
order to minimise the resource footprint 
without error-prone manual modifications. 
These achievements make Component C 
an ideal programming language for low-
level embedded software and embedded 
hardware with very limited resources. 

Compared to the attempts to realise reus-
able, adjustable templates with C++, our 
approach offers the advantage that really 
self-containing components can be de-
fined, which can be individually tested and 
checked, whereas when C++ templates 
are used, lots of checks can first be made 
by the compiler when the templates are 
instanced, i.e. when the user uses them 
and may result in error messages that re-
fer to the code of the template, so no final-
ised components can be created when 
using C++ templates. Furthermore, C++ 
templates are often difficult to understand 
for average C/C++ programmers and noto-
riously hard to debug.  

Already existing component models for 
Embedded Software (e.g. ECOS Compo-
nent Model [2], Koala [3], Knit [4], 
TinyOs/nesC [5], Real-time Corba, Mini-
mum Corba) are often specifically devel-
oped for specific projects, for specific in-
dustry sectors, for specific platforms or for 
specific compilers and the components 
created with these are not truly generally 
reusable again, for instance on 8 bit plat-
forms that are very limited in resources. 

Only the solution developed by TI, Real-
Time Software Components (RTSC [6]) 
has a standard comparable to our solution 
in supporting as many platforms for which 
an ANSI-C-Compiler is available as possi-
ble. In contrast to the RTCS solution, in 
our approach not only the interface de-
scriptions are evaluated by our tool but 
also the component implementations. Be-

cause of this, the Composer can optimise 
the source code for every component and 
every application without modifying the 
kernel of an already tested component, so 
the validation of the component remains. 
This, the XDCtools cannot offer. Our ap-
proach also seamlessly integrates in the 
programming language C, so experienced 
C-developers are quickly able to imple-
ment, configure and link components 
whereas for RTSC with XDCspec and 
XDCscript at the same time two new lan-
guages where defined. 
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