
Innovative Embedded Software Reuse:
from Copy & Paste to Micro Software Components.

Thomas Klöker, Dirk Friebel

Geesmanns Kotten 24 – 45663 Recklinghausen - Germany

{tk,df}@softcomponents.de http://www.softcomponents.de

Abstract

This paper presents an innovative, extremely resource-friendly component technology for
embedded software. This software component technology maximizes the possibilities to re-
use software and minimizes the costs leading to a reduced development time and develop-
ment costs and better software quality. It allows the reuse even of small software parts (so
called micro components) without consuming additional memory or run time. It provides ge-
neric mechanisms for software component configuration (no more unreadable nested #if /
#ifdef’s) in order to fit a reusable software component to the needs of a certain application
without resorting to error-prone manual source code modifications (no more copy & paste). It
allows static or dynamic interconnections of components and interfaces either during build-
time or during run-time with the ability to insert arbitrary glue code. It supports distributed
systems through generic marshalling mechanisms. It is realized by a tool working as a pre-
compiler for a C dialect, basically minimally extended by adding the two component-oriented
keywords component and interface. This tool produces ANSI-C code that can be com-
piled for any platform for which a conforming C compiler is available – no operating system
or framework libraries are required. Due to a transparent naming convention, the C code
generated by the tool can be mixed with any hand-coded or otherwise auto-generated C
code. The tool also provides generic support for generating software component documenta-
tion and for automating software component tests. The approach solves typical problems
encountered when trying to develop reusable software in C and is easy to understand for
skilled C/C++ - programmers.

1. Introduction

Component oriented software develop-
ment is one of the most promising ap-
proaches to control the always-increasing
complexity of computer programs. The use
of reusable, tested and therefore mature
software components can significantly
accelerate the development of a complex
computer program and at the same time,
the quality of the final product normally
increases considerably because of the
assured quality of the individual compo-
nents.

The use of existing component techniques
out of the PC or server software area, like
COM or Corba, is prohibited for embedded
computer systems with very limited re-

sources based on e.g. 8- or 16-bit micro-
controllers due to the amount of additional
computer resources like memory and run
time these techniques require. Additionally
required resources consequently require a
more powerful microcontroller, which will
be more expensive and whose price then
increases the costs for each end device or
decreases the earnings per end device
respectively. Since these microcontrollers
are often applied in large volume products
where the cost pressure from the custom-
ers and competitors is very high, this nor-
mally isn’t acceptable.

In addition, a reusable software compo-
nent must cover the largest possible func-
tionality for all imaginable applications in

order to be flexibly useable without
changes. In case such software compo-
nents are used with existing component
techniques for a specific application, a
major part of the functionality isn’t used in
this particular case, but then unnecessarily
wastes resources like memory and run
time, which is unacceptable on computer
systems with limited resources because of
the reasons mentioned before.

To be able to remove such unnecessary
functionality out of a component after-
wards, unlike in the PC or server software
area the software components shouldn’t
be defined on a binary code level but on a
source code level, since all optimisation
possibilities are still available here. Soft-
ware components on a binary code level
would also limit the reusability a lot any-
way because of the large amount of binary
incompatible microcontroller platforms.

2. Problem definition

If one tries to develop a reusable C-
module or a C++-class for an embedded
software application, one often faces a
conflict of interest between a possibly
widespread and flexible and a resource
optimised implementation during the de-
sign phase – in this case one has to de-
cide between one of the solutions that
normally limits the reusability again. The
following problem classes can be distin-
guished:

1. Multiple use of a code module

2. Constant or variable parameters

3. Flexible linking of modules

Below, these problem classes are clarified
using the example of the design of a soft-
ware driver module for a serial port:

Depending on the amount of connection
pins, individual members inside a micro-
controller family are often configured with
a different amount of peripheral devices.
For instance a microcontroller of a specific
family only has one serial port while an-
other member is equipped with three,
where these are typically identically ac-
cessed and only the registers and the in-
terrupt vectors of the peripheral devices
are located at different addresses respec-
tively.

If a software driver module for the serial
ports of this microcontroller family should

be developed in a not specifically compo-
nent oriented programming language like
C or C++ now, the question arises if the
driver functions should be provided with an
index for the desired serial port or not. For
microcontrollers with only one serial port,
passing an index would be a waste of re-
sources since no different ports can be
accessed. Even for microcontrollers with
more then one port, it should be consid-
ered if passing an index is useful or if it
would be better if a copy of the driver
module would be available for each serial
port instead. The last option definitely
makes sense when a program optimised
for run time is required, sufficient memory
is available and the meaning of the ports is
fixed during build time and doesn’t change
during run time. Since the same program
code is used more than once passing an
additional index does save memory but
will cost run time since on every access of
the driver functions to the serial port regis-
ters, the corresponding indexing has to be
resolved. Such different requirements can
currently be met only by error-prone man-
ual copying of source code (aka Copy &
Paste) or by the help of rather intranspar-
ent and hardly maintainable C-pre-
processor constructs using multiply in-
cluded header files with renaming macros,
which are also error-prone.

Other problems in a not particularly com-
ponent oriented programming language
like C or C++ may arise in the initialisation
of the software driver for a serial port when
transfer parameters like baud rate, number
of data bits, number of stop bits, parity
und/or the like are considered. In a lot of
applications these parameters are defined
during the build time, since the respective
systems have fixed connections to other
systems with fixed transfer parameters.
Only on few systems, these parameters
can change during run time. The transfer
parameters can therefore be either vari-
able parameters of the initialisation func-
tion of the driver module or can be con-
stant parameters of the driver module de-
fined by macros. For applications where
the transfer parameters are fixed at build
time, variable parameters would be a true
waste of memory and run time, since the
required calculations can already be car-
ried out during compilation. Nevertheless,
committing to fixed parameters considera-
bly limits the flexibility and reusability of

the driver module. Until now, such different
requirements could only be realised by an
error-prone manual modification of source
code or by means of an also, because of
its poor maintainability, error-prone condi-
tional compilation using the C-pre-
processor constructs #if and #ifdef.

Further problems in a not specifically
component oriented programming lan-
guage like C or C++ arise when linking
such a software driver module for serial
ports for instance with an overlying soft-
ware module for the implementation of a
communication protocol through given
ports.

FrameProtocol

SCIDriver

A software driver module for a serial port
typically has, when realised via interrupts,
exported functions that can be used by
other modules and that can be called for
actions like starting the transmission a
character via the port and imported func-
tions that are used by the software driver
interface itself and that are called for
events like indication the receipt of a char-
acter via the port. After an according link-
ing, the communication protocol module,
logically having a higher level then the
software driver module, now calls the func-
tions that are imported by this protocol and
exported by the port driver and the port
driver on its side would call the functions
imported by this module, which are ex-
ported by the protocol module.

In case one wants to develop reusable
software modules, the source code of
these modules may not have direct refer-
ences to functions from another module
since in another application for instance a
completly different communication protocol
could be on top of the software driver or
the communication protocol could use a
completely different interface. Such a
transparent component linking is very hard
to achieve in C, especially in case of recip-
rocal references, since problems with cir-

cular included header files arise very
quickly.

A B

A B

�

�

Although these problems can basically be
solved by an extensive use of the C-pre-
processor, one will end up with a hardly
maintainable collection of deep nested
code fragments that are conditionally
compiled using the pre-processor con-
structs #if and #ifdef, which are further-
more littered with deep nested macro defi-
nitions using the pre-processor construct
#define.

Since such a code becomes unmaintain-
able very quickly, one limits itself during
the real design of C-modules or C++-
classes to those special cases that appear
to be important at that particular moment.
As a consequence, this of course limits the
possibility of reuse a lot (for an adequate
example see [1]).

3. Solution proposal

We at SoftComponents have developed a
solution for these problems based on our
own, unsatisfying efforts spent in the past
few years in using the standard C pre-
processor in a clever way to program
component oriented but nevertheless
maintainable.

It consists of a dialect of the standard pro-
gramming language C, which has been
cautiously extended by a few component
elements that are mapped to ANSI-C by a
dedicated pre-compiler and which we call
Component C therefore. Basically, the two
keywords component and interface
have been added and the syntax was ex-
tended in analogy to the other C language
syntax elements. Since there are alterna-
tive language elements available now, an
obligatory integration of the C-pre-
processor can be abandoned and a clear
language definition can be achieved.

An outstanding achievement of this solu-
tion is the generic configurability of
every software component created with it
without the need for the component devel-
oper to write any configuration dependend

code. Because of this, every component
can be adapted to the respective applica-
tion without additional efforts and the use
of resources is minimised. Therefore, also
the smallest software elements can be
reused as so-called MicroComponents
without any overhead.

From a syntactic point of view, a compo-
nent definition in Component C equates a
type declaration, from a semantic point of
view it is more equivalent to a template in
C++ (but significantly differs), since no
binary code is created at this stage. How-
ever, a component configuration equates
an initialised variable definition in C from a
syntactic point of view, but from a seman-
tic point of view it rather equals the use of
a template in C++; since at this stage bi-
nary code will be generated.

Component definition

Components may contain types, con-
stants, variables, functions, interfaces or
subcomponents as exported or imported
elements. Types, constants, variables and
functions are defined as in C, optional at-
tributes as similar to MIDL. Interfaces are
logical groups of elements and can contain
types, constants, variables, functions or
sub-interfaces. Global variables and func-
tions outside a component are, as in C,
allowed.

All elements required by a component and
provided by another component, i.e. which
are imported, are labelled with the key-
word extern. All elements that are only

used inside the component and should not
be imported or exported are labelled with
the keyword static. All elements without
such a label are exported. These defini-
tions are equivalent to the usage of the
keywords on module level in C. For a
clean distinction of components, imported
variables can only be written when they
are additionally labelled with the keyword
volatile - otherwise they will be read-
only.

Below an example of a definition of two
software components in Component C is
shown:

// Defines Interface ia

interface ia

{

 int fa (int x);

 int fb (int z);

};

// Defines Component a

component a

{

 char v = 1;

 static int sv = 2;

 volatile float vv = 3;

 const long c = 42;

 static const short sc = 43;

 volatile const double vc = 44;

 int f (int x, int y)

 {

 return (x*y);

 }

 int fa (int x)

 {

 return (x*v/c);

 };

 int fb (int z)

 {

 return (z*c);

 }

 interface ia ia1;

};

// Defines Component b

component b

{

 extern int ev;

 extern const long ec;

 extern int ef (int x, int y);

 extern interface ia eia1;

 interface ib

 {

 int fc (int y);

 }

 ib1 =

 {

 .fc = {

 return (eia1.fa (y)+ev); }

 };

};

Component usage

An implemented component can be used
once or multiple times in an application in
the same, but also in a different configura-
tion. If the component a defined above
should be used once, this is possible in
the following way:

// One component instance;

// Component functions do not

// contain a reference. A single

// variable with the name a_vk1

// is defined.

component a a_vk1;

void main (void)

{

 printf („%d“,a_vk1.ia1.

fa (42));

}

If the above-mentioned component a
should be used twice with an identical de-
fault configuration but, for instance, with
different names, this is possible in the fol-
lowing way:

component a a_vk1, a_vk2;

or

component a a_vk1;

component a a_vk2;

This usage actually creates two copies of
the source code and can be applied in the
case that a component is used in different
configurations or when sufficient memory
is available and the access time has to be
minimised by constant addresses.

If a component should be used N times
with an identical default configuration, this
is possible in the following way:

// Three component instances;

// Component functions contain

// an impicit index as a

// reference, a variable array

// with the name a a_vk3

// with three elements is

// defined.

component a a_vk3[3];

void main (void)

{

 printf („%d“,a_vk3[2].ia1.

fa (42));

}

If a component should be used an arbi-
trary number of times possibly changing
during runtime, this is possible in the fol-
lowing way.

// Arbitrary number of

// component instances;

// Component functions contain

// an explicit pointer as a

// reference, a type with

// the name a_vk4 is defined.

component a *a_vk4;

void main (void)

{

 a_vk4 a1;

 a_vk4 *pa2;

pa2 = new a_vk4;

 printf („%d,%d“, a1.ia1.

fa (42),pa2->ia1.

fa (43));

}

We call a usage of a defined component in
one of these ways a configuration of the
component. The last two configurations
create only one copy of the source code
each, where in the first case a component
index and in the second case a compo-
nent pointer is passed implicitly to the
component function. In the latter case, a
component definition and configuration
basically turns into a class definition from
an object oriented programming point of
view.

Configurating exported elements
In case the variable isn’t required for the
specific application, a variable exported by
a component can be labelled unused by
setting the respective variable to zero.

component a a_ev1 =

{

 .v = 0 // Exported

// variable v unused

};

Because of this, the created source code
can be optimised, especially when a vari-
able in a component is only written, not
read.

When an application always uses the
same value for a function parameter, a
function exported by a component can be
configured by specifying a constant pa-
rameter instead of a variable one.

component a a_kf1 =

{

 .f = { .x = 42 } // Parameter

// x of the function f fixed

};

By doing so, the created source code can
be optimised by immediately using a con-
stant instead of a variable when the func-
tion isn’t called with other values inside the
component definition itself.

Also, a function can be labelled unused by
assigning a zero.

component a a_kf2 =

{

 .f = 0 // Function f

// unused

};

By doing so, the source code can be
dropped when the function isn’t called in-
side the component definition itself.

An interface exported by a component can
be configured appropriately for an applica-
tion by labelling non-used functions and
variables as well as constant function pa-
rameters.

component a a_ks1 =

{

 .ia = {

 .fa = { .x = 42 },

 .fb = 0 }

};

By doing so, the source code can be opti-
mised.

Also, an interface can be labelled unused
by assigning a zero.

component a a_ks2 =

{

 .ia = 0 // Interface

// ia unused

};

By doing so, the source code and memory
allocation can be omitted when the func-
tions or variables respectively, aren’t used
in the component definition itself.

Linking imported elements

Imported elements can generally either be
linked statically during build time, in order
to minimise the resource footprint but can
also be linked dynamically during runtime
in order to maximise the flexibility.

In a component configuration, a constant
imported by a component can be statically
linked to a type compatible constant ex-
pression.

component b b_vk1 =

{

 .ec = 42

};

For a component used N times, two cases
can be distinguished. In the first case a
constant has the same value for all in-
stances

component b b_vk2[3] =

{

 .ec = 42 // Same value for

 // all instances

};

In the second case it has different values
for the different instances

const long c_vk[3] =

 { 1, 2, 3 };

component b b_vk3[3] =

{

 .ec = c_vk // Different

 // values for different

 // instances

};

component b b_vk4[3] =

{

 .ec = {42, 43, 44} // Different

 // values for different

// instances

};

Both an explicit as well as an implicit as-
signment of an array is possible here. In
this way, components used N times can
be parameterised equally but also un-
equally.

In a component configuration, a variable
imported by a component can be statically
linked to a type compatible variable or
constant expression.

component b b_vv1 =

{

 .ev = 5

};

int v_vv1;

component b b_vv2 =

{

 .ev = v_vv1+3;

};

component a a_vv1;

component b b_vv3 =

{

 .ev = a_vv1.v;

};

For the first case attention has to be paid
to the fact that the expression doesn’t con-
tain any unwanted side-effects since the
time point on which the evaluation takes
place depends on the component imple-
mentation and because of this, can’t be
predicted when required. In the second
case, using a constant instead of a vari-
able can optimise the created source
code.

As for constants, for a component configu-
ration used N times, two cases can be
distinguished. In the first case, all in-

stances use the same expression where in
the second case different expressions are
used. By this, the pre-compiler tries to op-
timise the evaluation and, when possible,
uses fields of values or pointers when only
constant expressions or pointer expres-
sions are used respectively.

If no static linking occurs in the component
configuration, a function pointer instead of
a variable is created, which has to be dy-
namically initialised by the application
when the component is used.

int v_vv4 (void)

{

 return 42;

}

component b b_vv4;

void main (void)

{

 b_vv4.ev = v_vv4;

}

In this case, the variable type of the con-
figured component becomes a pointer to a
function that returns a value of the original
type and in the implementation of the
component a function call is implicitly in-
serted when the variables are referenced.

In a component configuration, a function
imported by a component can be statically
linked with a code block or with a type
compatible function pointer expression.

component b b_vf1 =

{

 .ef = { return (x/2); }

};

int f_vf1 (int x, int y)

{

 return (x*y);

}

component b b_vf2 =

{

 .ef = f_vf1

};

component a a_vf1;

component b b_vf3 =

{

 .ef = a_vf1.f

};

When linking to a code block, the pre-
compiler will always realise it as an inline
function. It is always recommended to use
an intermediary code block when individ-

ual arguments of a function are not evalu-
ated, since the source code can then be
optimised in such a way that only the re-
quired arguments have to be calculated.

For a component configuration used N
times, two cases can be distinguished
again. In the first case all instances call
the same function, in the second case dif-
ferent functions are called.

In a component configuration, an interface
imported by a component can be statically
linked with a type compatible listing of in-
dividual elements or with a type compati-
ble interface.

component b b_vs1 =

{

 .eia = { .fa={return (x/2);},

 .fb={return (0);} };

// Interface connected

// to Glue Logic

};

component a a_vs1;

component b b_vs2 =

{

 .eia = a_vs1.ia1;

// Interfaces connected 1:1

};

For a component configuration used N
times, two cases can be distinguished
again. In the first case all instances use
the same interface and a component index
is passed through.

component a a_vs2[3];

component b b_vs3[3] =

{

 .eia = a_vs2.ia;

// Index passes through 1:1

};

And in the second case different interfaces
are used and no component index is
passed through anymore.

component a a_vs3[3];

component b b_vs4[3] =

{

 .eia = { a_vs3[2].ia,

 a_vs3[1].ia, a_vs3[0].ia };

 // Explicit Index mapping

};

For a component used an arbitrary num-
ber of times, in the static component con-
figuration only the first case can be used,
which then looks as follows.

interface ia *ia_vs =

{

 .fa = { return (x+2); },

 .fb = { return (42); }

}

component b *b_vs5 =

{

 .eia = ia_vs

};

Interface inheritance

Component C supports both simple inheri-
tance of interfaces, like in COM, as well as
multiple inheritance, but not the inheri-
tance of function code like in C++, since
this disagrees with the basic thoughts be-
hind components, which include a much
stricter focus on the encapsulation of in-
formation.

To avoid the well known Fragile Base
Class Problem, also in so-called object
oriented programming one works more
and more with abstract base classes – but
abstract base classes are nothing different
from interfaces!

External references

Like in Java, qualified names are used to
refer to components and interfaces de-
fined in separate files.

component driver.bus.can.toucan mycan;

// ->

$(COMPROOT)\driver\bus\toucan.ccHere
integral parts of names are mapped on a
directory structure until the name decom-
position has reached file level. In the case
that further integral name parts are avail-
able, it is then referred to an element in-
side the file. If the name refers to a com-
plete file, the complete contents of the file
will then be interpreted as a component or
an interface respectively, without having
the entire contents of the file to be paren-
thesed with the according keywords.

This concept leads to a very advanta-
geous recursive structure; every summa-
rised sentence of configured and linked
components in the file can on his part be
interpreted as a component again.

Because of this, a conventional C-module,
in which no pre-processor statements like
#include are present, can directly be inter-
preted and used as a component without
any change.

Attribute and Marshalling

In the description of interface elements,
additional attributes like in MIDL can be
declared. Because of this, it becomes
possible to realize a generic marshalling of
function calls and by doing so, systems
with different priority levels or distributed
systems can be especially supported.

Further Features

The availability of a pre-compiler allows
the implementation of some additional
features that are very useful for the crea-
tion of Embedded Software components.
For example arbitrary scaled fixed-point
types are supported in the following ad-
vantageous form:

uint16 Vspd/10; //Vehicle speed

 //[3.1 km/h]

typedef sint16 TORQUE*0.05;

 //[3.2 Nm]

TORQUE T_trg; // Target torque

TORQUE T_act; // Actual torque

On top of this, the definition of individual
bits, supported by some microcontrollers
via bit addressed memory, is also allowed
outside structures.

int B_ll : 1; // idling

Finally, type templates can also be used
inside the component definition, which
then first have to be defined by a compo-
nent configuration.

any a; // Arbitrary type

any int i; // An integer type

4. Pre-compiler operation method

The pre-compiler named Composer gen-
erates C code and header files from appli-
cation-independent component definitions
directed by application-dependent compo-
nent configurations as shown below.

Component
Repository

Pre-Compiler
for component

configuration and
linking (Composer)

User
Work Areaapplication-specific

component configurations

application-specific
generated C-/H-files

application-independent

component definitions

Here the configured number of instances,
the component multiplicity, is mapped in
such a way that a structure containing the
variables of the component is defined and
for components containing only one in-
stance, a corresponding variable of this
type is defined, to whose elements the
functions of the component have direct
access to. However, for components with
a fixed number of N instances, a variable
array of N structures is built and an addi-
tional first parameter of integer type is
added to the component functions,
through which an index between 0 and N-
1 has to be passed for the respective
component instance. For components with
an arbitrary number of instances, a type
instead of a variable is defined and the
component functions are amended by an
additional first parameter of pointer type,
through which a pointer to a data structure
of the defined type has to be passed, for
which the application has to allocate
memory either statically or dynamically.

When not used in the component itself, the
pre-compiler removes exported elements
of a component marked unused in the
component configuration like variables,
functions and interfaces when they aren’t
used inside the component itself. Directed
by a command line switch the pre-compiler
is also able to detect unused exported
elements by itself, if the given component
configuration is concluded in itself and no
exported elements are used in another
hand-coded or auto-generated C module.

For exported functions, having individual
or all parameters replaced by constant

values in the component configuration, the
corresponding parameters are moved from
the function header to the beginning of the
function body before the function code and
are initialised with the value defined in the
component configuration.

The pre-compiler uses the value of im-
ported constants for the optimisation of the
source code when they are not marked
with the keyword volatile as being adjust-
able during the runtime of the program by
means of e.g. a configuration program.

When a Glue-logic expression is used in
the source code, the pre-compiler will re-
place the access to imported variables by
this expression, when a static link to an-
other variable is used it is replaced by an
access to this link and when a dynamic
link is used, it is replaced by function
linked by a pointer. If a Glue-Logic-
expression has been specified, it will be
used for the optimisation of the source
code.

Basically, all expressions that are constant
during build time are evaluated by the pre-
compiler and are optimised accordingly by
e.g. removing dead code that is not exe-
cuted anymore due to for instance a spe-
cific constant configuration selection, so
no warning messages will arise from the C
compiler later on. The resulting C-source
code is then optimised for both the mem-
ory allocation as well as the run time, so a
completely manually carried out program-
ming will not require remarkably less re-
sources.

Similar to JavaDoc or DoxyGen, the pre-
compiler provides support on the docu-
mentation of components on top of that. It
is also capable of creating XML-
descriptions of created software compo-
nents. Furthermore, generic support for
automatable component tests as well as
debugging and profiling is available.

Via simple naming conventions, the com-
ponent elements can also be accessed
from standard C-code, so a combination
with common development methods is
possible without any problems.

5. Discussion

When compared to other methods, the
approach introduced here shows some
advantages for component oriented pro-
gramming for embedded systems, but be-

cause it is a novelty, it can’t be seen as a
standard yet.

Our aim was to define a minimal exten-
sion of the standard C language in order
to be able to support component oriented
programming of embedded software at
system level and therefore allow better
reuse of embedded system software. The
main unique advantage of our approach is
the generic configurability of all software
components defined with it and therefore
the possibility to adjust every software
component to the need of an application in
order to minimise the resource footprint
without error-prone manual modifications.
These achievements make Component C
an ideal programming language for low-
level embedded software and embedded
hardware with very limited resources.

Compared to the attempts to realise reus-
able, adjustable templates with C++, our
approach offers the advantage that really
self-containing components can be de-
fined, which can be individually tested and
checked, whereas when C++ templates
are used, lots of checks can first be made
by the compiler when the templates are
instanced, i.e. when the user uses them
and may result in error messages that re-
fer to the code of the template, so no final-
ised components can be created when
using C++ templates. Furthermore, C++
templates are often difficult to understand
for average C/C++ programmers and noto-
riously hard to debug.

Already existing component models for
Embedded Software (e.g. ECOS Compo-
nent Model [2], Koala [3], Knit [4],
TinyOs/nesC [5], Real-time Corba, Mini-
mum Corba) are often specifically devel-
oped for specific projects, for specific in-
dustry sectors, for specific platforms or for
specific compilers and the components
created with these are not truly generally
reusable again, for instance on 8 bit plat-
forms that are very limited in resources.

Only the solution developed by TI, Real-
Time Software Components (RTSC [6])
has a standard comparable to our solution
in supporting as many platforms for which
an ANSI-C-Compiler is available as possi-
ble. In contrast to the RTCS solution, in
our approach not only the interface de-
scriptions are evaluated by our tool but
also the component implementations. Be-

cause of this, the Composer can optimise
the source code for every component and
every application without modifying the
kernel of an already tested component, so
the validation of the component remains.
This, the XDCtools cannot offer. Our ap-
proach also seamlessly integrates in the
programming language C, so experienced
C-developers are quickly able to imple-
ment, configure and link components
whereas for RTSC with XDCspec and
XDCscript at the same time two new lan-
guages where defined.

6. Literature and Links

[1]Softwareentwicklung für eingebettete
Systeme mit strukturierten Komponenten
Teil 2:Komponentenorientierte Modellie-
rung und Realisierung
Stephan Eberle und Peter Göhner, Uni-
versität Stuttgart, atp 45 (2003) Heft 2, p.
61ff, http://www.ias.unistuttgart.de/
foschung/pub/atp_strukt_Komp_teil2_04_
2004_eb_goe.pdf
[2] http://ecos.sourceware.org/
[3] The Koala Component Model for Con-
sumer Electronics Software,
Rob van Ommering, Frank van der Linden,
Jeff Kramer, Jeff Magee,
IEEE Computer, March 2000, p78-85
[4] Knit: Component Composition for Sys-
tem Software, Alastair Reid et al., Pro-
ceedings of the Fouth Symposium on Op-
erating Systems Design and Implementa-
tion (OSDI 2000), p. 347-360
[5] http://www.tinyos.net/
[6] http://www.eclipse.org/dsdp/rtsc/

